Collegiate Wind Competition 2016 DEPLOYMENT TEAM

TEAM MEMBERS: MIKE WERTZ RYAN SCHATZ ANAS ALKANDARI HASHIM ALRAMADHAN NORMAN CLARK BROCK PELLERIN

Project Description

- Design a small-scale wind turbine with a feasible business plan to enter the selected market
 - Small scale wind includes turbines 1-100 kW of rated generation

This Semester's Work

Market Research

- Existing small wind market research
- Decided on telecommunication energization market
- Identification of design requirements for desired market

Design Work

- Blade design and analysis
- Financial analysis of basic turbine design
- Research of generator types available
- Identification of generator type and requirements

Design Description

- <u>Rotor</u>: Converts wind's kinetic energy to mechanical energy
- <u>Main shaft</u>: Transmits the mechanical energy from one point to another
- <u>Magnets & coils (generator)</u>: Converts mechanical energy into electrical energy
- <u>Tail vane</u>: Directs the turbine into the on coming wind
- <u>Safety Devices</u>: This includes passive stall & tail deflection springs

Figure 1: Horizontal wind turbine components [1]

Design Requirements

- Horizontal axis wind turbine design (more efficient than vertical axis)
- Least amount of components possible (simplified design)
- Rated power of at least 3 kW @ 11 m/s wind speed
- Lightweight design (less than 150 lbs)
- Little or no maintenance involved (limit to 1 service a year)
- Rotor diameter of 4m or less

Prototype

- Software packages used
 - Matlab
 - Qblade
- Theories used
 - Blade element momentum
 - Betz's optimum rotor design with wake rotation
- Coefficient of power and power outputs
 - Coefficient of power: .47 @ tip speed ratio 5
 - Power: 3.6 Kw @ 11 m/s

Budget

- Nothing spent to date
 - \$4,097 per kW in India
 - India costs 61% of what it would be in US
 - 3.6kW turbine: total cost -\$14,749.20
 - Cost of possible turbine prototyping
 TBD

Schedule

#	Task	Date
1	Students meet with industry expert for generator design and selection discussion	Dec. 16, 2015
2	Preliminary Department of Energy (DOE) Document due	Dec. 17, 2015
3	-Individual research turbine structural components (ie tower, etc.)-Begin work on CAD models and array of simulations of components	Dec. 20, 2015 – Jan. 19, 2016
4	-Blade design & generator compatibilities identified -Create full array of CAD, FEA, and other models/simulations	Feb. 1, 2016
5	-Iterate design and business plan as needed -Finalize CAD and create manufacturing drawings	Feb. 2, 2016 – Mar. 1, 2016
6	-Physical prototype created -Work towards DOE presentations and final report	Apr. 10, 2016
7	-DOE final document and presentations due	Apr. 25, 2016
8	- Collegiate Wind Competition begins in New Orleans, LA at AWEA National Conference	May. 19, 2016

References

- [1]"The Energy Internet A Sustainable Decentralized Energy Infrastructure". [Online]. 5 December 2015. Available: http://muonray.blogspot.com/2015_06_01_archive.html
- [2] J. F. Manwell, J. G. McGowen and A. L. Roge, Wind Energy Explained, West Susex: John Wiley & Sons Ltd, 2009.
- [3] M. C. Brower, Wind Resource Assessment, Hoboken: Jon Wiley & Sons Ltd, 2012.
- [4] "Department of Energy," [Online]. Available: http://www.energy.gov/.
- [5] "SAM," Samadmin, 5/4/2010. [Online]. Available: https://sam.nrel.gov/.
- [6] "Airfoil Tools". [Online]. 1 November 2015. Available: http://airfoiltools.com/search.[Accessed 1 November 2015].
- [6] N. A. C. o. America."NACA". [Online]. November 2015. Available: https://www.naca.com/.
- [7] Mone, C., A. Smith, B. Maples, and M. Hand. "2013 Cost of Wind Energy Review." (2015): n. pag. Web